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LETTER TO THE EDITOR 

A variational principle for invariant tori of fixed frequency 

I C Percival 
Department of Applied Mathematics, Queen Mary College, Mile End Road, London El 
4NS. UK 

Received 5 December 1978 

Abstract. A fixed frequency Lagrangian variational principle is formulated for the invariant 
tori of conservative dynamical systems. It avoids the singularities due to small frequency 
divisors, and for pure rotation provides a strict bound which can be used as a basis for an 
effective variational method. 

Variational principles for orbits have guided the development of classical dynamics 
since Maupertuis and Hamilton (Lanczos 1949, Landau and Lifshitz 1969). Hamilton’s 
principle also helped Born and Jordan (1925) formulate the general theory of quantum 
mechanics (see also Van der Waerden 1967, p 289). However, the variational 
principles of dynamics have had less influence on the theory and practice of approxima- 
tion in classical dynamics than the Rayleigh-Ritz principle has had in quantum 
mechanics. In particular the perturbation theories of classical dynamics are usually 
obtained without applying variational principles, and the important theorems of 
Kolmogorov, Arnol’d (1961, 1963) and Moser (1962) (hereafter referred to as KAM) 
are proved without them. 

For regular bounded motion (see Whiteman 1977) we can name three reasons for 
this: 

(i) For a system of n freedoms the regular orbit lies in an invariant torus of n 
dimensions in the 2n-dimensional phase space. We need variational principles for the 
tori, not for the orbits. 

(ii) The famed small frequency divisors produce singularities arbitrarily close to 
every torus in phase space, thus reducing the radius of convergence of the usual 
perturbation expansions to zero. 

(iii) Unlike the Rayleigh-Ritz principle, the usual classical variational principles do 
not provide bounds (Helleman 1978). 

Reason (i) is no longer a problem as variational principles have been formulated for 
invariant tori (Percival 1974; see also Trkal 1922 and Van Vleck 1923) and used to 
obtain the usual form of the classical perturbation theory (Percival and Pomphrey 
1976). 

In these variational principles and in the corresponding perturbation theories the 
action variables are held fixed and the frequencies allowed to vary. Moser (1974) has 
remarked that an alternative perturbation theory, in which the frequencies are held 
fixed, has finite radii of convergence. This result follows from the KAM theorems. 
PoincarC already knew of the fixed frequency perturbation theory. 
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In this Letter we introduce fixed frequency variational principles for invariant tori, 
overcoming the difficulties of reason (ii), and then show that for coupled rotors one of 
these principles provides a strict bound, by contrast to reason (iii). 

There are two new principles, based on the Lagrangian function L(q, q )  and on the 
Hamiltonian function H ( p ,  q) ,  where q represents n configuration coordinates and p 
represents n conjugate generalised momentum coordinates. 

For the Lagrangian variational principle the torus Z is represented parametrically by 
a configuration function 

(1) 

(2) 

qde) = ( q d 8 ) ,  q d ) ,  . . . , qXn(8 ) )  

8 = (el, e2, . . . ,en) 
of the vector angle variable 

which is periodic of period 27r in each 0,. 
Let 

= ( ~ 1 ,  ~ 2 9  - ., u n )  (3) 
be the vector angular frequency for the motion in the invariant torus, and let 

Vo = (a/ael, ala&, . . . , a/ae,) (4) 

Using a .  b to denote the usual scalar product, the dynamical differential operator 
be the gradient operator with respect to 8. 

D, on the torus is defined by 

= w Vef(8). ( 5 )  

According to the 1974 Lagrangian fixed action variational principle for invariant 
tori, the functional 

'€'=(L(q(8), D d ( e ) ) - o . I >  (6 )  
is stationary at qr(8) with respect to the variation of both the function q(8) and the 
angular frequency U, with the I held constant. The mean of a functionf(8) over a torus 
is defined by 

(f(e)> = (2a)-n$ dne.  ! (e).  (7) 

The variation in q(8)  provides Lagrange's equation for the torus, which is 

DdV&(q, D 4 ) I  = v&(q, D d )  (8) 

where Vq represents a gradient with respect to the second vector argument of L. It may 
be verified that if qr(8) is asolution of (8), then q x ( o t  + 8') represents an orbit satisfying 
Lagrange's equations of motion with initial condition 8(0) = 8'. The variation in o 
provides a definition of the vector action variable I in terms of q(8) .  It is 

ij = (v&. (a/aej)q>. (9) 

In this variational principle the vector action variable I is held constant and the tori 
are distinguished from one another by differing values of I. There are strong arguments 
in favour of using the action I in this way, which follow from the fact that (I, 8 )  are 
canonical variables. However, it leads to difficulties because of the singularities due to 
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small frequency divisors which occur where the frequency vector w satisfies a relation of 
the form 

where k is any non-zero vector with integer components. Any w which does not satisfy 
equation (10) for any such k is named a proper frequency vector. Since any real number 
may be arbitrarily closely approximated by a rational number, there are improper w 
satisfying (lo), and therefore small divisors, arbitrarily close to any proper w. If w is 
allowed to vary, then arbitrarily small variations of the torus encounter singularities due 
to small frequency divisors, causing difficulties for both the theory and application of the 
variational principle. 

These difficulties are overcome by using a variational principle at fixed proper 
frequency w. Let the functional be 

k . w = . O  ( k # 0 )  (10) 

Q, = w(qw, D d m ) .  (11) 
Fixing w and allowing the q(8 )  to vary we obtain 

= ( Aq V&(q Dq) - A4 Dto(V&(q Dwq))) (14) 
where integration by parts and periodicity of all functions in 0, have been used to obtain 
equation (14). Lagrange’s equations (8) for the torus follow on equating first-order 
variations to zero. 

For the special but important case of coupled rotors and equivalent systems the 
Lagrangian functional (1 1) can provide a strict bound. In that case the coordinates 4, are 
chosen so that the configuration is periodic of period 27r in each of the qi. The 
configuration space is a torus of dimension n, and the function q(8) represents a 
mapping of an n-torus onto itself. If the mapping can be obtained by continuous 
deformation then qj increases by 2 n  when 0, increases by 27r, and since 0, is linear in 
time the motion is a rotation in all the qk The direction of rotation for 0, is determined by 
the sign of wi. The bound applies to rotations only. 

The Lagrangian can be put into the form 

U q ,  4 )  = T ( 4 )  - V ( q )  (15) 

= (1/2m)d2- ~ ( q )  (16) 

~ 4 )  = ( m A ( 0 ) ) )  (17) 

aV(4) = (v(q(m (18) 

Q,(q) = Q , T k )  -Q,v(q) (19) 

where V ( q )  is continuous and therefore bounded. In that case the functional 

is positive semi-definite and 

is bounded above by Sup V(q) .  Therefore the Lagrangian functional 

is bounded below, and provided that it is twice differentiable with respect to its 
functional argument at a point qr(8) in the function space where it attains its minimum, 
then qr(8) satisfies the toric Lagrange equations (8). There is an invariant torus at the 
minimum of Q, for all proper values of w satisfying the above condition. 
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By analogy with the Rayleigh-Ritz principle, the better of two approximate tori is 
that which has the lesser value of the functional a. However, the dependence is 
nonlinear, so other solutions with the same o can exist. 

This minimum principle does not apply when one of the coordinates qi does not 
rotate, but vibrates, and even the variational principle (12) cannot be used for purely 
harmonic motion. 

There is a Hamiltonian fixed frequency variational principle for tori, whereby the 
functional 

is stationary for variations in the functions q(8), p ( 8 ) .  6 is not an extremum, even for 
the case of pure rotation. 

In conclusion, the Lagrangian fixed frequency variational principle (12) for invari- 
ant tori avoids the singularities due to small frequency divisors, and given a functional 
differentiability condition which appears to be satisfied in practice, it provides a strict 
bound for pure rotation, and can be used as a basis for an effective variational method. 
Given the condition, there are invariant tori for all proper frequency vectors o. Of 
course this does not imply that there are tori for all vector actions I, as I is a 
discontinuous function of o. 

I should like to thank G E Powell and D Richards for helpful discussions, and the 
United Kingdom Science Research Council for a research grant. 
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